Good Morning

- Please take out your notebook and something to write with.
- In your notes: Write the balanced equation for Beryllium Iodide.

Homework

- Due Wednesday
- From Monday's Class: 3-7, 10, 11, 14, 16, 18, 20, 22, 41, 43, 46.
- From Tuesday's Class: 23, 25-27, 29, 48, 51

Chapter 7: Ionic and Metallic Bonding

7.1 lons

- Valence Electrons
- The octet rule
- Formation of anions and cations

Recalling PTE Organization

- Mendeleev used similar properties of elements to organize his periodic table of elements.
- Later, scientists discovered that elements with similar properties have similar electron configurations.

Valence Electrons

- The number of electrons on the highest energy level.
- These are on the outer "shell" of the atom.
- The valence electrons are the largest contributor to chemical properties of elements.

Determining Valence Electrons

- If they are in the s or p blocks, use the number the precedes A at the top of the column (group).
- We can represent them with Lewis Dot Structures.

Groups and Valence e-: Write the charge and an example of the Lewis Structure.

- Alkali Metals:
- Alkaline Earth Metals:
- Boron Group:
- Oxygen Group:
- Halogens:

Noble Gases

- Full Valence shell.
- Elite 8. Everyone wants to be a noble gas.
- Exception: Helium. Helium has a full shell at 2 valence electrons.

Mr. Lewis

 Gilbert Lewis (dot structure creator) was the first to say that chemicals (atoms) bond in order to get the e- configuration of a noble gas.

Octet Rule

- All atoms bond to get 8 electrons.
- This fills the valence shell.

Ions Review

- Metals generally lose electrons and become positively charged cations.
- Non-metals generally gain electrons to become negatively charges anions.

Note that lon

- Sodium:
- Sulfur:
- Rubidium:
- lodine:
- Aluminum:

- Lead (IV):
- Lithium:
- Tellurium:
- Calcium:
- Osmium:

Polyatomic lons

- These ions have net negative charges.
- They will behave similar to elements with similar charges when reacting (bonding) with other chemicals.

Thinking Deeper

- What happens when metals
 give their e- to
 non-metals?
- How do these ions behave when they have opposing charges?

7.2 Ionic Bonds and Ionic Compounds

- Charges in ionic compounds.
- Properties of ionic compounds.

Composition of Ionic Compounds

- Composed of cations and anions.
- Generally metals and non-metals.
- We can figure out the composition by balancing the charges.

Balance the Charges

- Write the balanced chemical formula.
- Sodium Chloride:
- Calcium Fluoride:
- Ammonium Nitrate:

Chemical Formulas

- Shows the kinds of elements and their number in a compound.
- Subscripts denote that the chemicals are bonded together.
- Only describe a ratio of chemicals,
 not a single unit of a compound.

Example

- Magnesium Bromide:
- Number of Magnesium ions:
- Number of Bromide anions:
- This is only a ratio or pattern, not the amount of Magnesium Bromide present.

Formula Units

- Smallest whole number ratio of ions in a compound.
- These are basically the chemical formula.
- The units (numbers) note the ratio of ions in the compound.

How lons Combine

- Elements want to get to 8 valence electrons.
- Metals give their ions to non-metals.
- The elements now have opposing charges.
- Opposites attract.

Example

Properties of Ionic Compounds

- Ionic bonds are strong compared to other kinds of bonds.
- This is due to the opposing charges of the ions.

Electrostatic Forces

- Ions have an imbalance of protons and electrons.
- This leads to a net charge.
- The attraction of opposing charges leads to strong bonds.

Properties of Ionic Compounds

 Most are crystalline structure at room temp.

Crystalized Salt

- We all need salt to live, but we take little time to think about what it really looks like.
- You may know that salt looks like a other crystals, but have not seen their exact shape.

Properties of Ionic Compounds

 Generally have high boiling and melting points compared to other compounds.

Properties of lonic Compounds

When in solution, ionic compounds conduct electricity.

A Closer Look

Illustrations

- Draw the interaction that happens when electrodes are places in a solution containing an ionic compound.
- Present your drawing to the other group at your lab table.

lonic compounds are brittle.

- Charges alternate in ionic crystalline structures.
- What happens when you try to move a column up or down?

Illustration

Making Salt Crystals

- Please take a handout for you and your lab partner to share.
- Begin reading over the set up and procedure.

7.3 Metallic Bonding

- Valence electrons in metal atoms.
- Arrangement of atoms in a metal.
- The importance of alloys.

What's a Metal?

 If I asked someone on the street to name a metal, what would some of their answers be?

Valence Electrons

- What we think of as a "regular" metal is generally a transition metal.
- These metals generally have 2 valence electrons.
- What do these atoms do to become neutral?

Sea of Electrons

- When metals are all packed together, they all want to lose 2 electrons.
- All of these cations are packed together.
- Where do their electrons go?

Sea of Electrons

Stay Close

- A metal loses 2 electrons and gets a positive charge.
- It is now attracted to the electrons moving around it.
- This keeps the metals from breaking away from the sea of electrons.

Properties: Conductors

Conduction in Metals

- The free electrons in metals are repelled by electricity (negative charge).
- The electrons migrate away from the charge and bring a similar charge to the other side of the metal.

Illustration

You Present

- Draw a representation of a metallic bond.
- Present your picture to the other group at your lab table.
- Explain why metals make good conductors.

Ductile

- Metals can be molded into wires.
- This is because the cations can remain stable when we move them through the "sea of electrons."
- Why wouldn't this work in ionic compounds?

Structure

- Metals are tightly packed.
- The optimize space and form crystal-like structures.

Silver

Metallic Crystal Structures

Alloys

- A mixture of 2 or more elements.
- Very few of the metals that we use are pure metals.
- Because pure metals are ductile, they may be weaker.
- Adding other elements polarizes crystalline structures.

Examples

- Sterling Silver: 92.5% Silver, 7.5% Copper.
- Cast Iron: 96% Iron, 4% Carbon.
- Stainless Steel: 80.6% Fe, 18.0% Cr, 0.4% C, 1.0% Ni.